Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Min Duan, ${ }^{\text {a }}$ * Peng-Mian Huang, ${ }^{\text {b }}$ Jiang-Sheng Li, ${ }^{\text {b }}$ Peng-Wu Zheng ${ }^{\text {a }}$ and Xiao-Ji Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Pharmacy, Jiangxi Science \& Technology Normal University, Nanchang 330013, People's Republic of China, and ${ }^{\text {b }}$ College of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China
Correspondence e-mail:
dxmlhp@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.038$
$w R$ factor $=0.114$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,6-Dibromo-9-(4-pyridylmethyl)-9H-carbazole

The title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2}$, was synthesized by N alkylation of 4-chloromethylpyridine with 3,6-dibromo-9Hcarbazole. The carbazole ring system is essentially planar, with a mean deviation of $0.012 \AA$, and makes a dihedral angle of $83.2(8)^{\circ}$ with the plane of the pyridine ring. In the crystal structure, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions are observed.

Comment

Carbazole derivatives substituted by N-alkylation have useful pharmaceutical properties (Buu-Hoї \& Royer, 1950; Harfenist \& Joyner, 1983; Caulfield et al., 2002; Harper et al., 2002). In this paper we report the structure of 3,6-dibromo-9-(4-pyridylmethyl)-9 H -carbazole, (I), which was synthesized by N alkylation of 4-chloromethylpyridine with 3,6-dibromo-9Hcarbazole.

The carbazole ring system in (I) is essentially planar, with a mean deviation of $0.012 \AA$, consistent with recent determinations of similar structures (Huang et al., 2005; Duan, Huang et al., 2005). The dihedral angle formed between the carbazole ring system and the plane of the pyridine ring is $83.2(8)^{\circ}$. The $\mathrm{C}-\mathrm{Br}$ distances are in the range 1.903 (3) -1.901 (4)\%A, consistent with the literature (Allen et al., 1987).

Experimental

The title compound was prepared according to the procedure of Duan, Han et al. (2005). A solution of potassium hydroxide (7.0 g) in dimethylformamide (50 ml) was stirred at room temperature for $20 \mathrm{~min} .3,6$-Dibromo- 9 H -carbazole ($6.50 \mathrm{~g}, 20 \mathrm{mmol}$) (Smith et al., 1992) was added and the mixture stirred for a further 40 min . A solution of 4-chloromethylpyridine ($3.83 \mathrm{~g}, 30 \mathrm{mmol}$) in dimethylformamide (50 ml) was added dropwise with stirring. The resulting mixture was then stirred at room temperature for 12 h and poured into water (500 ml), yielding a white precipitate. The solid product was filtered off, washed with cold water and recrystallized from dichlormethane and EtOH ($1: 1 \mathrm{v} / \mathrm{v}$), giving crystals of (I). Yield: $7.29 \mathrm{~g}(87.6 \%)$; m.p. $510-511 \mathrm{~K}$. Compound (I) (40 mg) was dissolved in a mixture of chloroform (5 ml) and ethanol (3 ml) and the solution

Received 3 January 2006
Accepted 20 February 2006

Figure 1
The molecular structure of (I), with displacement ellopsoids drawn at the 30% probability level.

Figure 2
Packing of the title compound, viewed along [010]. Dashed lines indicate hydrogen bonds.
was kept at room temperature for 16 d . Natural evaporation of the solution gave colourless crystals suitable for X-ray analysis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \\
& M_{r}=416.12 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=11.266(4) \AA \\
& b=9.729(4) \AA \\
& c=14.367(5) \AA \\
& \beta=98.341(6)^{\circ} \\
& V=1558.1(10) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.240, T_{\text {max }}=0.353$
8543 measured reflections
3207 independent reflections 2376 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-14 \rightarrow 9$
$k=-12 \rightarrow 10$
$l=-17 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0619 P)^{2}\right. \\
& \quad \quad+0.1399 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.80 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0067(7)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{i}}$	0.93	2.87	$3.653(4)$	142

Symmetry code: (i) $x-1, y, z$.

All H atoms were included using the riding model approximation, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and 0.97 (methylene) \AA, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the Foundation for Excellent Young Teachers by Jiangxi Science \& Technology Normal University.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SADABS (Version 2.0), SMART (Version 5.10), SAINT (Version 5.10) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Buu-Hoï, N. P. \& Royer, R. (1950). J. Org. Chem. 15, 123-130.
Caulfield, T., Cherrier, M. P., Combeau, C. \& Mailliet, P. (2002). Eur. Patent No. 1253141.
Duan, X. M., Han, J., Chen, L. G., Xu, Y. J. \& Li, Y. (2005). Fine Chemicals, 22, 39-40, and 52.
Duan, X.-M., Huang, P.-M., Zheng, P.-W. \& Li, J.-S. (2005). Acta Cryst. E61, o3361-o3363.
Harfenist, M. \& Joyner, C. T. (1983). US Patent No. 4379160.
Harper, R. W., Lin, H. S. \& Richett, M. E. (2002). World Patent No. 02079154.
Huang, P.-M., Li, J.-S., Duan, X.-M., Zeng, T. \& Yan, X.-L. (2005). Acta Cryst. E61, o2366-o2367.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, K., James, D. M., Mistry, A. G., Bye, M. R. \& Faulkner, D. J. (1992). Tetrahedron, 48, 7479-7488.

[^0]: © 2006 International Union of Crystallography All rights reserved

